A Poincaré-birkhoff-witt Theorem for Hopf Algebras with Central Hopf Algebra Coradical
نویسنده
چکیده
We show that over algebraically closed fields of characteristic zero a Hopf algebra with central Hopf algebra coradical has a PBW basis after some localization of the coradical.
منابع مشابه
Poincaré-birkhoff-witt Deformations of Smash Product Algebras from Hopf Actions on Koszul Algebras
Let H be a Hopf algebra and let B be a Koszul H-module algebra. We provide necessary and sufficient conditions for a filtered algebra to be a Poincaré-Birkhoff-Witt (PBW) deformation of the smash product algebra B#H. Many examples of these deformations are given.
متن کامل2 7 N ov 2 00 3 PBW bases for a class of braided Hopf algebras ⋆
We prove the existence of a basis of Poincaré-Birkhoff-Witt type for braided Hopf algebras R generated by a braided subspace V ⊂ P (R) if the braiding on V fulfils a triangularity condition. We apply our result to pointed Hopf algebras with abelian coradical and to Nichols algebras of low dimensional simple Uq(sl2)-modules.
متن کاملOn the Structure of Cofree Hopf Algebras
We prove an analogue of the Poincaré-Birkhoff-Witt theorem and of the Cartier-Milnor-Moore theorem for non-cocommutative Hopf algebras. The primitive part of a cofree Hopf algebra is a B∞-algebra. We construct a universal enveloping functor U2 from B∞-algebras to 2-associative algebras, i.e. algebras equipped with two associative operations. We show that any cofree Hopf algebra H is of the form...
متن کاملA Quantum Analog of the Poincare–birkhoff–witt Theorem
We reduce the basis construction problem for Hopf algebras generated by skew-primitive semi-invariants to a study of special elements, called “super-letters,” which are defined by Shirshov standard words. In this way we show that above Hopf algebras always have sets of PBW-generators (“hard” super-letters). It is shown also that these Hopf algebras having not more than finitely many “hard” supe...
متن کاملTHE POSITIVE PART OF THE QUANTIZED UNIVERSAL ENVELOPING ALGEBRA OF TYPE AnAS A BRAIDED QUANTUM GROUP
The aim of this paper is to explain the bialgebra structure of the positive part of the quantized universal enveloping algebra (Drinfeld-Jimbo quantum group) of type Anusing the Lie algebra theory concepts. Recently has been introduced a generalization of Lie algebras, the basic T -Lie algebras [1]. Using the T -Lie algebra concept some new (we think) quantum groups of type Ancan be constructed...
متن کامل